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On the Limit Behavior of a Multi-Compartment Storage Model

With an Underlying Markov Chain II: With Normalization

by

Eric S. Tollar

Abstract

The present paper considers a multi-compartment storage model with one way

flow. The inputs and outputs for each compartment are controlled by a denumer-

able state Markov chain. Assuming finite first and second moment conditions,

the limit behavior of the compartments are examined. It is shown that the

diverging compartments under suitable normalization converge to functionals of

Bro mian motion, independent of those compartments which converge without

normalization.



1. INTRODUCTION

In this paper, a multi-compartment storage model with one-way flow is

considered. This model is a generalization of a one compartment model considered

by Puri [8], Puri and Senturia [9], [10], Balagopal [1], Puri and Woolford [11],

and others. In Tollar [12], it was established that under first moment criteria,

as time increases, the subcritical compartments converge in distribution,

while the critical and supercritical compartments diverge. This paper examines

the limit behavior of the divergent compartments when suitably normalized.

In section 2, the model being considered is described, and some results in

[12] are summarized. In section 3, intermediate results for maximums of pro-

cesses defined on a Markov are obtained. In particular, these results show

that the normalized difference between the process considered and the similar

maximum defined on i.i.d. random variables converges in probability to zero.

In section 4, it is shown that the divergent compartments appropriately normal-

ized converge to functionals of Brownian motion and that this behavior is

independent of the convergent compartments.

2. THE MODEL

Let fXn; n= 0, 1, 2, ... } be an aperiodic, recurrent, irreducible, Markov

chain with denumerable state space J and stationary measure it. For i c J,

let (V (i)= (V (i) , V (i)): n= 1, 2, ...1 be a sequence of i.i.d.

k +1 -tuples, independent of (X}1 and of (Vn(j)} for j* i. We then consider

a model in which Z(n) = (ZI(n), ... , Zk(n)) represents the amount of material at

time n in the k compartments. For each compartment e, Ze(n) is given by

.- ..'- .- . ..,-.,.¢ - - ..,- -,._.-.,'-.;-_:;- ;-; , :... -.. ,-, ;..,..-.- . ..-;-;.. . ...-y . .;. .' .. ?-.. .- . ."-:
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Z(n) = min' [S(J 1 ) + (S(j 2 )- Sl(jl))...

* (StI(n) - S_i(jei)) ]  (2.1)

-min ISo0 J1) + + (Se(n) - se(j )
0!5jl<5. .. <_Sjt sn

where Si(m) is defined by

m
Si(m) V V 1 (Xj) (2.2)

For further discussion of the motivation and origin of (2.1), see Tollar [12]

For 0!5 Z k, we define E Vt by

E "V = j TrJE[VeI(j)] (2.3)jJ~

We will refer to compartment £ as either subcritical, critical or supercritical
when Ey V mjn (E Vi) is greater than, equal to, or less than 0, respec-

w~ir0-<5 3.<

tively. It is established in [12] that as n tends to infinity, the subcritical

compartments converge, while the critical and super critical compartments

diverge.

The convergence properties of the compartments were shown to not depend

on the initial distributions of the compartments. Further, for {: n= 0,1,...)

the dual Markov chain (for definition, see Cinlar [4]), it was shown the limit

behavior of Z(n) coincides with the behavior of Z (n) = (21(n), . k(n)

where Zi(n) is defined as follows:

. .~ .. ... ... . . . . ...... .... o, - -...... . o- ° -° ° , , - , ,* o-**,. , .-
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Zin) m .in (S i-101 ) +[s i-2 j21"si.2(0il)]3 ... [So On) -So(ji_,) 1)
0 !5 J 1 <  " ' < 5 J - < n

- ~ (2.4)ain CiCjl)+...+[§o~n)-§OCji) ]),(.4
0O< jl<:...5 j i:5n

where Wj(m) is defined as

m
S = IV. l (2. S )

It was also established in [12], that the initial distribution of X0 was not

related to the limit behavior of the compartments. As such, we will set

Z(O) =O, and X0 -- , and use either expression (2.1) or (2.4), whichever proves

more useful.

3. INTE1'EDIATE ASYMPTOTIC RESULTS

When working with processes with underlying Markov chains, the typical

approach (see Chug [3]) is to use the return times to an arbitrary state

i 0 e J to generate a sequence of i.i.d. random variables. It is shown that

functionals of these i.i.d. random variables have the same asymptotic

behavior as the processes under consideration. This is the technique to be

used on certain functionals related to the process Z(n) in this section.

For arbitrary i0 c J, we define t ni0) recursively by

tn(io) = min{j >tn-iU0 ): Xj=i 0}, to(i 0 ) - 0 . (3.1)

Let {Yn(i), n=l,2, ... } be i.i.d. sequences defined for all i 7 J, independent

of (Yn(J), n 1,2, ... } ij, and also of {(X}. If EfIYI<s, it can be

• .. . ,• . .. . .. . - ._.- .•.. - .. -. - - . - .• , ----- -,- -': -- -... -.- -. .. .: , .".-.'. .-n- .. , ,. :',



-4-

shown (see Balagopal [I]) that

ti 0 )
Y((io)  I X.) )3 (3.2)

n~(i0  = i=t nl(iO) * 1

is an i.i.d. sequence with E[Y*(io) - (tn(iO) -tn1 (io))E Y]= 0, for n > 1.

If we let a2 = E[Y*(io)2 1Xo=i 0], we have a? < - if and only if a? < - for
10 1 0

all j e J, in which case it ag = 'ifo2 . We will also define
0

tn(io)

n 0 iIi0  i (Xil

In most cases the state i0 is understood, and i0 will be dropped in expres-

sion (3.1), (3.2), and (3.3). Let {(Y (i) ..., Y C,n(i)): n=l,2,... I be an

i.i.d. t-tuple sequence, independent of {Y ln(j),...,Yz,n(j)): n=l,2, ...J,

i j, and also of (X ), the Markov chain with stationary measure t. Further,n

let us define (n) by

n
M, (n)= l(Xi= io) (3.4)
0 i=l

We then have the following intermediate theorem.

MOM Let E, 1 ti < -, and E (21X 0 i0) < , 1i<. Then as

nt -o- e,

1/2 max k (X.))
9J,& ...<5j<n k=l iJk_1l

t k

max ( Y,)] 2 0.
OJlS...!5jeio(n) kal i=Jk-l~l

... . .. .• .. .-- .- ' - -' - . . . .. -' " " -- .- .' ' . - ' - -.-" " " " -.-" " -' ' -.-' . , -' ' ' ' ' .-.-0 \ ,



-5-

PROOF. It can easily be seen that

t ik

max ( I I Yk,i(Xi)) (3.5)
0O 5j 1 :5... :j t 5n k=l i=Jk l+l

max ( I Yl i(Xi)t I .. Y ki(Xi))
t1 Sjl < . . . j t'tM (n) i=t 1 +l k=2 i=J k-1+1

[0

me ti t n!5 7. 3. sl (x i) I+ 7. 2IY i, (x )l
j=l i=l j=l i=. (n) + 1

10

t ti

Since P(t < ) 1, we have that n" 2 2 IY (Xi) 1 .

In (Chung [3]), it is shown under the assumption that E [Y I <®, that

12 1 j,i(xi) .
i tM. (n)+ 1

10

Thus, we get from (3.5) that

- Jk
n max Y Yki (Xi)) (3.6)

O<jl5...<j in k=l i= ikl+l1

J £ Jk
-max (X ; liXl ' Yk i(xi))t ]) 0.

t 1 l Jl< ... :5 it ,tM.i (n) i=tl+ 1 k-2 i=Jk l+l
'0

Let us define tM. (n)+ I = tM. (n) +1, ro=1, and for lr 1 !5r 2 < ... : r Mi(n)

10 10 0
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B(rj, r 2 ... ,rt) = jl, i~ jl~rj 2 5 5jZ

(3.7)

rr 1 +1 r 2 !j2 < r 2  rz e

=~j z max I y i(j
B~r,, f) Ii t +1

rk

j? (3.8)

Yk,i(X i)) + + YfIXl
jut

Then we have

tjmax I Y 11i(X .i Ykj X )
t1 t:!s*. ~JtM i(n) i0t 1 +1 k=2 I J=k-1.1

Z k
max I Ik Cx)

max (LJ(r ,.., )(3.9)

10.

I max 1 lyki (X ) Y k+li(X dI

+ max l Xd)
1!5 < M.i (n) = t.+1 tl1



--

Since we have

tj+l

P( max ( Z IYZ, i(xi) > cVn'i)1l5 < M o(n) i t +

t.
n j+l

g P( U ( I IYi (Xi)J > cA }) (3.10)
j=I i=t.+1

J

t 2
:5 n P( I IY t i(X i) > e in-

i = t 1+1l

and E( 2, 11 X=i) < -, we get that
t 2

lim n P( I 1Yi(X.)j > ern) 0, (3.12)
n0 i= tl+1

with a similar result for the other term in (3.9). Thus we get

-1/2 Z i
n max ( I I Yk,i(Xi))

0<j1...<:5j5n k=l I=Jk1l+l

(3.13)
t

mark-max ( I y Yk'i(Xi)) I ). 0.

1 1l<...<rt-<Mio(n ) k=l i=t rkl+l

and the theorem is established. 0

Before continuing with results on the maximums of sequences defined on

Markov chains, we establish the following lemma about i.i.d. random variables

with finite variance and means less than zero.



-8-

LEMI-I 3.2: Let {X n= 1, 2, ... } be an i.i.d. sequence with EX < 0,1/2 k
EX2 < -. Then, as n n-1 2  max j) 0 .

05j!k-<n i=j+l

PROOF. Set Si = Xi,
1=1

k
max ( I Xi) = max (Sk-SS).

0: j:<krn i=j+l O-j<-k -n

For any m, divide [O,n] into [mv-+ 1] approximately equal sized parts, setting

n= Eirim -] with n[m4/n.l]-n, where [x] is the greatest integer of x. Then

let

=t iin{i: n aZI and (3.14)

R = max [max(O, max (Sn S ))] (3.15)
n,m 0 j! n i. < !1[ - rnvn ] + 1] k

*Clearly, for all n,m,

(3.16)

To establish that as n, m-, n-1/2(R n - R ,) 0 , we define

k
Ek,n = {w: n [ max (Se-S.) /en],k~n e=10<j<Z

(3.17)

E E krn n{w:S S 5 F n

-k (3.18

k,n,2 = k,n n. k >
I .
k
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From (3.17) and (3.18) it can be seen that

n n n
P(Rn > cVn ) = IP(E ) k n IP(Eknl + k P(Ek n,2) . (3.19)

k = 1~ k = I ' k I

Also, from (3.15) we have

P(E l ) 5 P(E , max (Sn  - S.) > Ey-l2
k,n, Ek,n, 0j k ik

(3.20)

SP(E k,n R n m > ern/2).

Thus, we have

I " > dV .2 ) (3.21)
k=l1 knl

Since Sn. -Sk is independent of Ekn, we have
I k

P(Ek,n,2) = P(Ekn) P(Sn - Sk < -c//2). (3.22)

Since the X's are i.i.d. we get

P(Sn. -S k  - /2 ) P(Sn. k < -/nn/2 )n.k n.k
(3.23)

nik -k

= P( (Xi-EX) < -En/2- (ni -k)EX)
i=1

As can be easily established, n. -k : /inm +1. Since EX<0,ik (3.24)

n -k .1 -1/2 (.4

P(S -Sk < -cn/2 )< P( . (Xi-EX) < -. (/2 +(m' +n 2)EX))).
Ik il

_--'-.: .'- -'' ..-... -",'':''-''.-,-.' -.-.-. '.-.-' ,' ---i'. ... .. i 7 .. il - -- i 1 i ----'-"

", ". - , , - -. .: . _. .' V '; - ''-: ,: - . _ r -" . -- % - : - ." " ." " " .. . . .... , .. .. .. .
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For any e, choose m and n sufficiently large so that e/2+ (m-1 +n- /2)EX > 0.

Then from Chebyshev's inequality, we get

P(S n... - Sk < -eln-/2) < (nik -k)W
2 n"I (0]2+ (m-I +n 1 /2)EX)-2

kk (3.25)

(r (m " + l) a n'l(e/2 + (m- + n I/)EX)-

Therefore
n n1 211 /EX-
IP(E k,n,2) <5 lP(%,n ) (Anm "I + I)0 n -I (c/ 2 + (m"I + n 'I 2 E -

kl kl

(3.26)

< (n m- + I)o2 n -I(/2 + (m "  n'I/2)EX)2

Thus, for all m > -2EX/e, as n )= I

n

lim P(Ek 2 ) = 0. (3.27)
n + k1 

=

Combining (3.16), (3.19), (3.21) and (3.27), we have for m > -2EX/e, there is

an N where for all n > N,

P(Rn,m > er) : P(Rn > er) < P(Rn m >1Ai/2 ) . (3.28)

Clearly, from (3.15) we have

R n'm max ( max (Sn -S.)). (3.29)

oo.,.-.o,,~~~ ~~~ f . o ° . . o o . o , , . . k : , mr. +. 1- 0 . 5° j: .k k" - "I " " . ' ' " , , -
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Thus, m1W. 1

P( , > 61) I PC max (S n-S) > 6rW)Em/n' 1 1 kul ~ j~n T ~k(3.30)

= [ PC max (S )>,' 8 ),

k=1 0:< j < nk

d
since max (S-S) = max (S ). As such,

05 J5 <nk 0 < j5 nk

P(R m > 6/n ) < Em + IJ PC(sup (S.) > 6) (3.31)

By (Kiefer and Wolfowitz [71), since EX2 < D, we have E sup (S.) < =. Thus,

+ j2!0
by the well known result, lir xP(X>x)*O if EX <W, we get

X- W

Zim [m/W+ 11 P( sup (S.) > 6/n) = 0, for all 6. Thus, we have P(R n > 61W)-0,
n - -co 20

which yields from (3.28) P(Rn > e ) O. 00

In the following theorem, define (t 1 , " " tr) as the indices of

E Y1 ,...,E.YY such that E Yli=0.

LNEOREM 3.3: Let EtIYJi <0, E, r i < 0 , and E(YfIX0 =i 0 )< , 1 i

Then, as n-,-,

1/2( t i. Y ki(Xi )

n E max I~ I
O< Jl...!5j<n k=1 i=Jkl+l

m Jk

- max (~ I It) ~0
0!5.j.1 

5  j n ] k=l i=Jk1+l

. . , . ...-.-.-....-.- .- .- ,.... . ,.-.... '-"... ;.. ...... ,.... -..i.' .ii"• "" " "' ' L " L. """. " " "" '". "" .''" . " . .' .. ,.. ',.. .. '...' ., ... ,,
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PROOf: From Theorem 3.1, we know that we need only show that

n 1/2 max ( Z Y*

1<J ' JZ< Miin k=1 i=Jk-l+l k

(3.32)

m Jk
Or.J I S .. 5jm: n k=l 'i)]- + IO.

Since n-IM (n) - w , there is a decreasing sequence (en: n 1, 2,i0 0 .

where cn + 0 and for all n,

P(E(ni - n)n] 5Mi (n) < [(.i n )n]) > 1-c (3.33)

Let us define Z1 (n) - EiriO - Cn)n], e(n) = [ii n], 2 (n) = [ni +c)n].

Then, for any e >0,

p(l max i Y*.)

l J < ' " < j  ( n ) kl i=Jkl+l

Zk
-max I~ I *.I r

P( max CI I Y,i)
Jl 5' ' "  2 < (n ) k=l i=Jkl

I Jk (3.34)
-,max c~ [ Y v,,) > c/ii),

ik
P(max (*

J k
+ Y* ) > crn)+ce
k=2 =Jk-l+l'

j-- - ........ '...........
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Because the Y*,Is are i.i.d, we have

t£ Ji t Jk

max I~ Y* + I Y ~
t1(n): <jl <  ... 5 J2<f£2 (n) l- I(n). k= i' =Jk-l+l

(3.3S)

dj-1 t k-  Y

O J <  " " <  Z <  (n) - il (n) i=O I i =J~

Now, we have

Jl"I  m Jk- 1

max I t*i+ I I Y *.)
0!5 jl <: ... !5 j m<5t2(n) - tl (n) i=O k-2 W i=Jk-l 'k"

Jil-i t jk 1

!5max ( . y
0.. - k=2 i=Jk-l

O< l <  ; t<2(n tln)i=O li k=

1<l..<m<-- 2(n) - tl(n) i=O ,ik 2 iJk-1Y

m -I s-I+ I I I ma I F. cY .- Y* 'i:):
kal j=k_ 1+1 0:9r~ssett2C(n) -ZCn) i=T t'

£ s-1
I max I~ Y
k=Z +1 0s ri 5 s es 2(n) - I(n) i=r

Since E(Yi - Y i 0 for t-1 < j < t' we have from lemma 3.2 that

-1/2 s-i1

n /  max s Y k " ) , (3.37)
0!9 r: s £2(n) - tj(n) i=r J -
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1/2 s-1

and similarly n max Is Y! i -* 0 for j>
or S S5 2 (n) -t1 (n) ir 3t

In addition, since
jl"I  m Jk"l

0!5Jl < S . . . S j m 't 2 (n ) - tl cn ) i--O i k=2 i=Jk-l e

(3.38)

r-i r-1 r -1

max Y I Y*
rrm! 2(n)n- j= i=0 I i=O m

we get
r l1 -1l rk - l

O~1 < . .. rm : 2 (n ) - t, ( n ) i =0 W' =1r k l 1k

M-1 r-1SPC max Ci , *lij~lO<r 2Cn - C) Y1' " Y  > evn/m ( 3.39)

r-1
+ P( max C I Y1 i) > L/rn).

Ors 2(n)- 1(n) i=0 m'

For 1j<m, we have E Yl ,i-YI 0. and (3.40)

r-11
P( max .- ./2.- > -. - - . . (n) -. 1 (n)

S P( max Ir lYL -Y* .i)) > £ (2en -l )- -1/2 (t2 (n) - t,(n)) 1 .
0 Sr:5 2(n) - tj(n) 1-0 j, t~
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r-I1

Thus, since max = Y*Y ¥ -Y1.) converges to an absolute normal,
0 !5r:5n 1=0 j'1 +

(see Erdtss and Kac [6)), we have that since (2cn +n-l1 ) 1/2 that

expression (3.40) converges to 0, regardless of whether or not Z2 (n) - 1(n)

tends to infinity. As such, from (3.34), (3.36), (3.37) and (3.39), we

have that

n 2[ max I Yk,i (X)
O S Y ... 4J nk = i k l + 1 (3.41)

Z rk-I
max I I Yj)I,- O.

1!5 r 1<!5 ... !S r [ ion] k=l i=rk.1

Finally, note that if t2(n)- tZ(n) is replaced by n in (3.36), (3.37), we

get that

1 rk'ln'l2 max I I k i)
0: T rI S ... S reg <f [io0n] k--I i-rk.I *

km irkl

max m k Y00O5r 1<5...<:5r :< [ion ] k--I i=rk. I- i]'

which coupled with (.3.41) completes the proof of the lemma. 0

In the following section, the limit behavior of the critical and super-

critical compartments is established.

4. THE ASYMPTOTIC BEHAVIOR OF THE NORMALIZED PROCESS

The behavior of the normalized critical and supercritical compartments

can now be established. In addition, it will be shown that the limit distri-

bution of the normalized compartments is independent of the limit distribution

,w"-.",.' " .,',." .,.,-'.:'wC'." ... . . s.. % - .. .. .. . .."........-,.-......-,........-,'..',........"...'.-.........,...........-"
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of the subcritical compartments. The lenma needed to establish the asymptotic

independence of the subcritical and the critical and supercritical compartments

will be stated without proof, since it is straightforward.

LEM&t 4.1 Lt {(Xl(n), 2 (n)), n= 1, 2, ...) be a sequence of random vector

couplets defined on a Markov chain (Xn}. Let l(n) 9 Ylas n =. Further,

for all m > 0, let there exist a random vector sequence (m) n=m, m , ...

defined on the chain {Xn, such that

1) 4 m) _2(n) 0, as n + ®, for all m > 0.

2) P(Y1 (m) : A Y(M) : 9 Xm) = P( Y1Cm) < XlXm)P(Cm) : LIX), for n > m,
Inm) 1 n __

3) p(Y(m) 5 ,)Xmi) - P(X 2 5< ) asn , for all ieJ, for all m, for all

continuity points y of ,2 Then, for all continuity points CZ,X) of the

distribution (IX) , we have

lim P(Xl(n) <9, X2 (n) :y) = P(X1 < Z) P(Y2 < X)"

We now establish the main theorem of this paper. In the k compartment

model, let (il, ..., im) be the indices for the subcritical compartments, and

let (jl, ""1 je) be the indices for the critical or supercritical compartments,

so m+t=k. Further, for ease of notation we define for li k, Ii by

i= min E (4.1)O~gj<i C v ) " "C41

Then the following theorem holds.

"-: "'-. ..''...'.' "'.- "'.'..'- ""..''........................,..-...................'.-...........-..................-.....................,.-.......-..'........-... ,. : " ',
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THEOEM 4 If E Ivi <, E[V 2  IX - i o) < for o: i 5 k, then
.j.2 Ir ~ I , 1 0= 0

lira P(Z l(n)<:5x 1, ,Z i (n) f<xi  Z Zj(n) - nuj n 1/ 2

n 1 m m I J1 i jl

zit(n) - nu Je5x. n 1 / 2 )

- P(Zi 5x i 1, '  i  x i ) " F(Wo('),'"Wk('))

for all continuity points (xi , ... , xim ) of (Zi, ... , Zi ) , where

WO(-), ... , Wk(.) is multivariate Brownian motion with 0 drift and appropriate

variance matrix a2 , and F(.) is some appropriate functional.

O We will first find asymptotically equivalent expressions for the

critical or supercritical compartments. Let compartment t be either critical

or supercritical. From (2.1) it can be shown that

Zy(n) min CS o(jl)(Sl(j 2 )-Sl(jl))+ ..+(S w(n)-Sw(Jw))]
0 5n w !5 w

Z-1 (4.2)

- . Z (n) - an CSo(J l )+...+(St(n)-StCjt))
j w+l O <Jl < . . .  <j g n 0

for w defined as w = maxfj <t: E V.= min E Vi. By (Tollar [12]), we
1? 0<i<Ze '

have that n '/2z(n) 0 0, for w <i< . Thus we need only consider
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min [So(Jl) +... (Sw(n) -Sw(J))J (4.3)0O<j, S ... !5jw:5n

mn [SO(j1) + ... + (St(n) - S(jt))]0O<J 1 S...<:5j't<n

W-1
Sw(n) max I ([Sw(Jm+l) -Vim) I -[Sm(Jm+l) -%mJm) ])I0O:5J 1<5...<5Jw sn m=O

z- 1
St(n) + max ( Is Ci (m~l) - store) I - ES (im ) - Sm 0m) 1)).-

0J S <15...< Sn m.=O

From the definition of w and the assumption that cell t is either

critical or supercritical, we know that EVm - E Vt< 0 for 0 m < L, and

E Vm -E V O for 09m<w. Also, it is well known (see Chung [3)) that

Dir n]

n- 1/2[S(n) -1 V ] . 0. (4.4)
im m,,m

Thus, from Theorem (3.3) and (4.3) we have
[fi.n]

n [Z(n)- (V,- VI i )i=l

r im
+ max I.(V* ))

0 S J 1 "S " .. 5J r <S [Iri n ] m--1 i -- 1~+1 l

r Jm
max {~ I (VI, V~. (4.S)OJ1 S <Jr+l S< Cfi n ] "- imj (V 'i

=jl ilJrm-l

+ I (vl~i -Vo),] 0.
i=Jr +1

where (kl, ... ,kr) are the indices less than w where E Vk. = E V. As such,

,. .. ..-.. .. ..,. .... -.......-............. ... ..... :. .-....-.................. ....:.o -.,....-.
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i=0

r m
+max ( I w. -V k j)

O<:5 .. i : i: r: [ i0 n] m=1 ix - 1- 1 l-

r im (4.6)max I I (vI.i Rm~i
0 ! j 1l 5 ... :S Jr+ 1 : [ Wion ] m =1 i=J M -l+ l

ni==r ili ~ rrn-jI,

Note that in (4.6), if E Vw > EuVe, thenfrom lemma 3.2 it follows that

m r m jr+
n max ( I I V*1-V*m)+ 1 V 0

O<j l 5... -jr+i [ i0n ]  m -I i -Jm + lk j i- Jr( .
(4.7)

in which case, this term can be deleted from (4.6).

Thus, from (4.6) we have that

"l/2[(Zj (n) - nuj4 , Z. (n) - nj., ..., Z (n) - n.je))

is asymptotically equivalent to a functional of (Yo,n() Y, k,n(-)),

where for Ost:1,

[nio t]

n-1/2 -I E (4.8)

To see this, one need only note that

.- '.-.''".?.. - -"'"."."--,- ." .- .."-. . .* v . '. , . * .. .'.. . .: .- ,. . . .,-- "" " X '
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-1/2 r* V*
Smax w,i

0<jl:.. .' ' jr  [wi0n] m=l i=jm.+l
r 1(4.9)

Ssup [YwnCSr) -( (Yk n(Sm) Y Yk (Sm MI))]0 <!5sl1:5 . . . < :5S 1 wn r m=l kM m k m n  "M .

with similar relations for the other necessary terms of (4.6). Thus, for

( 1 1 j21 ... , j) the indices of the critical or supercritical cells, we have

1/2 ((n)"nj I " ", n)-n '" Ykn ()) P 0, (4.10)

for h(-) an appropriate functional on Ck+lrO,l]. That h(.) is continuous is

clear from (4.6), so we have by the uniform convergence of (Y0,n(l),...Y k,n())

tomultivariate Brownian motion (see Billingsley [2], Donsker rs]) that

h(Y ,n(.), ..., Yk,n ()) - h(W0 (.), ..., ' (4.11)

where (W0(.), ..., Wk(.)) is a multivariate Brownian motion with drift 0 and

variance matrix a given by

(ia) i 't cov(V1 if Vt* 1) (4.12)
0 1

To complete the proof, we need only show the asymptotic independence of

the critical and supercritical cells from the subcritical ones. This can be

accomplished by appealing to Lemma 4.1. For (il, ..., i ) the subcritical
1' m

indices, we know from (Tollar [12]) that

(2.iln) ., 2im(n) ) a.(Zil .I (.3

S i., 1 Zi .m

Also, for (j 1 , "". je) the critical or supercritical cells, let
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r1

2(m ) m= in I .v ,C.)
is m5r 1 < ... <r sn i=m+l is "I

is-1

r2 n

+ I V. (*i) + + I VO0i( i))  (4.14)
i=rl 2,i .+ i=ri 1+1

rl n
min I .V. (Xi) I + O' Vi(X i ) )

m!5rs... r sn i=m+l Is". "" +1

To apply Lemma 4.1, let

Xl(n) = ( (n), ... , 2 (n)),

1-2(n) = n- 112Ctjl (n) - n~pjl, ... , (n) -ripj£)

y(m) . n- 1/2 (2!m3(n) - nP. , . m(n) - npjz .,n 31 "] "' 3J.

Clearly the conditions of the lemma are met, which yields the sought after

independence. This completes the proof of the theorem. 0

To highlight the nature of the functional cited in Theorem 4.2, we will

state without proof the marginal asymptotic behavior of any critical or

supercritical cell as a corollary of Theorem 4.1, as it follows directly from

(4.6) and (4.7).

CO. For a fixed e, let w = max{j <t: E Vj = min EV.}, and

(kl, k2 , .. , kr) be the indices such that ki <w and ErVk. = ErVw. Then if
1

.........................................-............ .'. " " " """, " ' " ,-,-e"- , , - . "." " .'% .". .. .,

'"l "lll~ilj l iii iiii'J ii'ii ii ' "' " " "" " " " .I- b
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1) compartment l is supercritical,

n'l/ {Zp(n) - n(EV w - ExVe)1 Ww(1) - WY(1)

rr
sup (Ww(sr ( Wk (Sm) -W k (Sm-l))) ;05s1:... <s: 1 m=1 m m

or if 2) compartment t is critical,

1/2( d r
n Z(n) - Ww(l)-W/(l)_ sup : (W (sr I (t1k (Sm)-Wk (sm-l)))

Oas 1 srl m=1 m m
r

+ sup (VI (sr+i) I (Wk (s) "W k ( s - l ))-(Ww('sr+ )-W (s ))
05 S < ... Srm 15 m w r

where (WO(-),..., Wk(.)) is multivariate Brownian motion with drift 0 and

a2 given by (4.12).

The expressions for h(-) given in Theorem 4.2 and Corollary I can

obviously be improved upon for the various specific arrangements of critical,

supercritical, and subcritical cells. Some of the limit distributions for

certain arrangements of critical and supercritical cells have densities that

can be expressed in integral form, but it should be noted that many of the

limit distributions seem to not have such simplified forms. As such, the

expressions in Corollary 1 cannot be noticeably simplified to expressions

that do not use functionals of Brownian motion.

5. CONCLUSION

There are several directions of further research left unanswered in this

paper. While the asymptotic behavior of the critical and supercritical models

were given in Corollary 1, nothing about the limiting distribution for the

K '-7 -L--7 -' .--."_".' .. * -. .- ...''-'-' -.. -' " - .-.- -'3 " ---- . -" . .-- -- .- , ., -- . ''- . ., . ''-, ... . 1- '
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subcritical cells other than existance was specified. Any characterization

of this limit, however, seems to be extremely difficult. For the single

cell model, results were obtained by Puri [12], but the techniques there do

not seem to generalize to the present case.

Results for more general flow structure than the one-,,ay flow used

in this paper seem tu r ,{tuirc di.fr~rt tcchniq-des than used above. Unlike

the one-way flow nodel, tiicrc appears to be no closed farn expression for

Zi(n) in the more general framework.

The model could be extended to continuous time by considering an

underlying semi-Markov process instead of a Markov chain. Results in this

area are presently under preparation.

• -. m N~m m mmllmimd......-.-... -.- - .. . . . . . . ....
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